
XSLT Strategies and Best Practices for Your CMOD Migrations

Our series on Content Management on Demand migrations continues with a look at 
best practices for migrating from an on-premises CMOD system to a cloud-based 
CMOD. We’ll share the XSLT methodologies that have worked well for our existing 
customers during very large moves to a hosted CMOD environment. We’ll also discuss 
common situations you may experience and best practices to solve any issues. 

DAS has worked with content management since 1994. As we’re seeing many of our 
public sector customers move to the cloud, we’re excited to bring our experience with 
file management, automation, migration, and more to the table. Learn the best practices 
for your move to a cloud-based CMOD.

When we’re moving from an existing, established CMOD system to a cloud-based 
CMOD, we need to be able to export all of the objects from the on-premise system over 
to the destination. Obviously, it’s vital that no data is lost in this process. In this situation, 
we’ve found it’s best practice to use the arsxml process to make this transfer. 

The arsxml ‘export’ function can be used to export a list of objects from your original 
CMOD source system. These objects can include everything that’s currently stored in 
your CMOD system, from users, groups, applications, storage sets, and any other 
object type you’ve created. The resulting list is formatted as an XML file which includes 
all the settings related to these objects.

You can make any changes that are necessary to the XML file before moving it to the 
destination CMOD using the arsxml ‘add’ function.

During the process of making the necessary changes, you may run into certain 
problems with the export. These problems may keep you from adding it to the 
destination system, so it’s important that we solve these errors now.

First, when you produce the XML file, you want to validate that it’s in the correct format 
with proper parameters. When you’re running files on the same system, this file should 
always check out. However, it’s best practice to confirm before moving forward.

Next, transfer the exported XML file over to the destination system. We can do an 
arsxml file validate at the destination system. This helps ensure that files are properly 
formatted even when moving between different systems.

After validation is when we may see issues with the file. For example, we may find 
some deprecated attributes that are no longer in use in current systems. There can be 
old user input errors, incorrect date/time default values, or other incorrect attribute 
settings. 



Transferring your CMOD system provides a valuable opportunity to find outdated 
information and bring files up to date. It’s best practice to remove any deprecated 
attributes before we can validate the file in the new system.

We could manually edit XML files to remove these deprecated attributes, but that’s not 
efficient or realistic in systems with hundreds or even thousands of application groups 
and storage sets. 

Instead, write XSLT to make changes to the XML file in bulk. This allows you to make 
changes to all of your files at once. You can remove all outdated or unsupported 
attributes from your system. Simply define all of the attributes to be removed in the 
XSLT file. When you execute the file against the XML file, a new XML file will be 
produced that does not include the unsupported attributes.

Once the new XML file is produced, you’re part of the way through the file transfer. The 
new file can be validated by arsxml ‘validate’ with no errors by the destination CMOD 
system. Next, we’ll use arsxml ‘add’ to add it to the new system. 

However, we’re not finished yet. Files that are properly formatted can still produce errors 
during the ‘add’ process. 

For example, we may find values or storage sets that are not valid for the new operating 
system. These values need to be changed before the transfer is complete. To solve this 
issue, it’s still best practice to use XSLT to find and modify invalid values or attributes.

Once you’ve created the XSLT to fix and remove deprecated attributes, run it against 
the XML file to create another new file. The new file will include the updated attributes 
that are compliant with your new CMOD system. 

The benefit of using XSLT is that this strategy allows you to easily update many different 
application groups, applications, users, groups, storage sets, etc. If you’re not using 
XSLT to update in bulk, your transfer process will take much longer than it needs to. 
Ultimately a migration should be efficient and economical, so we encourage you to use 
an XSLT methodology for a smoother migration.

At DAS, we’re familiar with making CMOD migrations to many different clouds. We can 
leverage a hybrid cloud strategy to make your experience as smooth and easy as 
possible. Please reach out to DAS to discuss the best strategy and build a plan for your 
migration needs.



IMPORTANT: This written material has been prepared based on sources which you 
provided. Neither Flocksy or the creative who wrote the copy makes any claims 
whatsoever as to the accuracy of the information contained within, and they are not 
responsible for any legal or financial difficulty resulting from the use of this written 
material. We encourage you to review it thoroughly before disseminating it or using it in 
trade.

SOURCES USED:

• https://drive.google.com/file/d/1TAhN_3hoa7J6gAcl1O1c86_QTxZ-q-RT/view?
usp=sharing 

• https://drive.google.com/file/d/1_O-neVsdDWqn4CkTqqjwlxAzETyrpY6_/view?
usp=sharing 

 

 

 

 

 

https://drive.google.com/file/d/1TAhN_3hoa7J6gAcl1O1c86_QTxZ-q-RT/view?usp=sharing
https://drive.google.com/file/d/1_O-neVsdDWqn4CkTqqjwlxAzETyrpY6_/view?usp=sharing

